
Leaps and bounds: Analyzing WebAssembly’s
performance with a focus on bounds checking

Raven Szewczyk1, Kimberley Stonehouse1, Antonio Barbalace1, and Tom Spink2

1University of Edinburgh, UK
2University of St Andrews, UK

Abstract

WebAssembly is gaining more and more popularity,
finding applications beyond the Web browser for which
it was initially designed. However, its performance, which
developers intended to be comparable with native, has not
been extensively studied to identify overheads and pinpoint
their causes. This paper identifies that WebAssembly’s bounds-
checked memory access safety mechanism may introduce up
to a 650% overhead, and requires further tuning.

Based on that, we extend four popular WebAssembly
runtimes with modern bounds checking mechanisms and
compare the performance of each with native compiled code.
The runtimes are evaluated on three different instruction set
architectures: x86-64, Armv8, and RISC-V RV64GC.

We show that, for simple numerical kernels from Poly-
Bench/C, there are no significant differences in the bounds
checking performance overheads across different instruction set
architectures. With the default bounds checking mechanism,
performance-oriented runtimes are able to achieve execution
times within 20% of native on x86-64 platforms, within 35%
on Armv8 platforms, and within 17% on RISC-V.

We also show that, when scaling the tested runtimes
to multiple threads, the default bounds checking approach
taken by WAVM, Wasmtime, and V8 of using the mprotect
syscall to resize memory can cause excessive locking in the
Linux kernel. Such scaling might be used to quickly start
up serverless instances for a single function without the
overhead of spawning new processes. We present an alternative
userfaultfd-based solution to mitigate this issue.

We share our results, tools, and scripts under an open
source license for other researchers to replicate and use to
monitor the progress that WebAssembly runtimes make as
they evolve.

1. Introduction

Language virtual machines are incredibly popular, en-
abling programs to be written once and executed on a vari-
ety of CPUs of different Instruction Set Architectures (ISAs)
without the need for recompilation, and often providing
enhanced security guarantees relative to native execution.
WebAssembly [9] is a language that is steadily gaining
traction. The initial goal of the WebAssembly project was
to develop a portable and compact binary representation
that would reduce the reliance of web applications on
JavaScript and allow them to run at near-native speeds

within browsers. Since then, WebAssembly has found
usage in other application domains; most notably as a
plugin sandbox mechanism [5] and as a Function-as-a-
Service (FaaS) runtime [32]. Despite the name, WebAssembly
applications are not confined to the web. The WebAssembly
System Interface (WASI) [34] provides a uniform way for
WebAssembly code to communicate with the underlying
system (e.g., the browser or the operating system), thus
extending the benefits of WebAssembly far beyond the web.

WebAssembly models a simple virtual stack machine.
However, it is distinct from other languages that use virtual
stack machines, in that it is an assembly-like language
with unmanaged memory access [26]. Rather than having
memory management features like garbage collection or
a managed heap, operations happen on two main data
structures: a linear memory, which is just a large array
of bytes, and tables of function pointers, which act as a
sandboxing mechanism for indirect branch instructions so
that their targets can only be valid WebAssembly functions.
This suggests that the bounds checking mechanism for
validating linear memory accesses (and, less frequently,
function table accesses) is likely a performance overhead
that is largely unique to WebAssembly runtimes. Of course,
other issues still exist, such as register allocation from
the stack bytecode or limitations of the structure that
WebAssembly enforces on the control flow between basic
blocks, but similar concerns also exist in other native and
dynamic programming languages.

In this paper, we consider the bounds checking overhead
that is specific to WebAssembly. We examine several
WebAssembly runtimes, ranging from an interpreter to
an LLVM-based AOT compiler. Our aim is to evaluate the
current state of WebAssembly performance when compared
to native code without bounds checking on three major
instruction set architectures: x86-64, Armv8, and RISC-V
RV64GC. We also augment each runtime with multiple
bounds checking strategies, in order to isolate the impact
of the bounds checking mechanism from the rest of the
code generation.

1.1. Motivation

As detailed by Rossberg et al. [26], the first goal of
WebAssembly (Wasm) is memory safety, that is, preventing
programs from compromising user data or system state, and
the second goal is speed. With WebAssembly now having a
myriad of use cases [33] and becoming widely adopted [21],

256

2022 IEEE International Symposium on Workload Characterization (IISWC)

978-1-6654-8798-6/22/$31.00 ©2022 IEEE
DOI 10.1109/IISWC55918.2022.00030



PolyBench/C SPEC CPU
2m

m

3m
m ad
i

at
ax

bi
cg

ch
ol

es
ky

co
rr

el
at

io
n

co
va

ri
an

ce

de
ri

ch
e

do
itg

en

du
rb

in

fd
td

−
2d

fl
oy

d−
w

ar
sh

al
l

ge
m

m

ge
m

ve
r

ge
su

m
m

v

gr
am

sc
hm

id
t

he
at

−
3d

ja
co

bi
−

1d

ja
co

bi
−

2d lu

lu
dc

m
p

m
vt

nu
ss

in
ov

se
id

el
−

2d

sy
m

m

sy
r2

k

sy
rk

tr
is

ol
v

tr
m

m

de
ep

sj
en

g

lb
m

m
cf

na
b

na
m

d

x2
64 xz

0

1

2

3

4

5

Benchmark

T
im

e 
vs

 n
at

iv
e 

(L
ow

er
=

B
et

te
r)

V8 Bounds checking No checks Mprotect

Figure 1: Cost of default bounds checking strategies in a WebAssembly runtime

achieving these goals is increasingly important. However,
memory safety and fast execution are notoriously conflicting
objectives, because safety mechanisms usually introduce
additional code that negatively impacts performance. There-
fore, it is crucial to identify the available memory safety
mechanisms and their comparative performance.

Herein, we focus exclusively on software memory safety
mechanisms, which are portable across different ISAs, at
least when using the same operating system or different
operating systems exposing the same system calls. At
the same time, there are several different Wasm runtimes
available to choose from, with a diverse set of designs
and implementations and each with a unique approach to
code generation and bounds checking. Like many imple-
mentation details, the choice of bounds checking strategy
can introduce significant overhead and ultimately impact
application execution time. Whilst other issues such as
register allocation and dealing with inlining can also impact
performance, these are encountered by many language
virtual machines, whereas the memory bounds checking
is specific to Wasm. In this paper, we focus on POSIX-
compliant operating systems due to the wide adoption of
Linux in data centers. To the best of our knowledge, despite
their diversity, most Wasm runtimes implement bounds
checking with mprotect() on POSIX operating systems.
Because new alternative mechanisms have recently been
made available at the operating system level [15], we believe
an evaluation of the different mechanisms is necessary.

Is bounds checking the real culprit of the performance
disparity with native execution? The work of Jangda et
al. [13] is the first highlighting that Wasm safety checks,
including stack overflow checks, indirect call checks, and
reserved registers, affect performance. To assess their claim,
we ran two sets of benchmarks in four Wasm runtimes

on three different ISAs (detailed further in subsection 3.3),
both with and without bounds checking. Figure 1 shows
the resulting execution times for V8-TurboFan on x86-64,
normalized on native execution (with no bounds checking).
The results show that whilst around half of the PolyBench/C
suite is unaffected, bounds checking may introduce between
20% (Cholesky) and 220% (gemm) overhead in application
execution time for the other half. For the SPEC benchmarks,
the overhead is between 10% and 80%. We obtained
similar results with different runtimes and ISAs, recording
overheads of up to 650% on Arm/Wasmtime, and a peak
50% overhead on RISC-V/V8. Thus, for many applications –
whilst not the only source of overhead – bounds checking
negatively impacts execution time.

Driven by the above, this work is the first empirical
evaluation that broadly compares different WebAssembly
runtimes, specifically looking at the impact of different
bounds checking strategies across diverse, modern, and
widely used ISAs and evaluating how well they achieve
WebAssembly’s primary goals.

1.2. Key Contributions

Our key contributions are:

• An extensive comparison of the performance of promi-
nent WebAssembly runtimes on three different ISAs.

• Isolation of the impact of various bounds checking
mechanisms on that performance.

• Implementations of alternative bounds checking strate-
gies for several WebAssembly runtimes, including
a novel approach based on user-mode page fault
handlers.

• A reproducible benchmark suite with automatic exe-
cution and data collection that can be reused on new
platforms.

257



• Reproduction of past findings on WebAssembly per-
formance, confirming and expanding upon the current
knowledge.

1.3. Key Results

The key results of our investigation are:

• There are no significant differences in the relative costs
of bounds checking methods across architectures for
simple numerical kernels from PolyBench/C: the cost
of each method seems to be roughly the same on
x86-64, Armv8 and RISC-V.

• Using mprotect() on Linux to dynamically adjust
the size of WebAssembly memory causes poor multi-
threaded scaling, decreasing maximum CPU utilization
by up to 25% for short-running benchmarks. This
is fully mitigated by our userfaultfd-based bounds
checking approach.

• WebAssembly is fast enough for server applications if
an appropriate runtime is used, with WAVM achieving
performance on par with native code for half of the
tested benchmarks, and an 8-20% average overhead
overall on x86-64.

2. Background

2.1. WebAssembly

WebAssembly is a simple and portable bytecode format
that can also be thought of as a programming language [26].
It was designed to be an easy target for compilation of high-
level programming languages such as C, C++, Go, and Rust,
while itself being easy to compile to efficient native code. It
grew out of a need to run safe, fast, and portable code on
the Web, replacing previous attempts such as asm.js [11]
and NaCl [6] with a clean-slate design. Despite its origins,
WebAssembly can be used outside of the Web ecosystem.
Supporting standards such as the WebAssembly System
Interface (WASI) [34] were co-developed alongside Web-
Assembly and explicitly create a POSIX-like environment
rather than a Web-based one.

In this way, WebAssembly runtimes can be compared
with other programming language virtual machines, like the
Java Virtual Machine [24], which was originally advertised
with the slogan “write once, run anywhere” and supports
prominent programming languages such as Java, Kotlin, and
Scala. Another similar example is the Common Language
Runtime [20] for languages such as C#, F#, and Visual Basic.

However, despite the similarities, WebAssembly is signif-
icantly less complex in its design than the aforementioned
languages. It currently does not have the capabilities for
dynamic code generation and modification, and instead of
managing a heap of objects for the programmer, it only
provides a single “linear” memory buffer which can be
grown in size akin to a dynamic array. Other elements of
WebAssembly programs include: module(s) – an organiza-
tional unit containing the definitions of other elements;
functions – named containers for WebAssembly code,
just like functions in most other programming languages;

variables – providing an infinite number of local registers
within function scope; function tables – used as a security
mechanism for indirect branches to avoid exposing the
host’s instruction pointer directly; and exports – supporting
named references to various other module elements for
other modules or the runtime host to refer to.

There are only four value types in the language: 32 and
64-bit variants of integers and floating point numbers. Any
other type has to be compiled down to instructions making
use of these four primitive types before generating the final
WebAssembly module.

2.2. Language Virtual Machines

Language virtual machines (VMs), also known as lan-
guage runtimes, are programs that execute bytecode such as
WebAssembly. Language VMs are what allow the platform-
independence and portability benefits of bytecode represen-
tations, separating the platform-specific VM implementation
from the platform-agnostic bytecode specification.

There are multiple approaches to VM implementation,
ranging from relatively slow but simple interpreters to fast
but complex Just-in-Time (JIT) and Ahead-of-Time (AOT)
compiler-enabled runtimes.

Interpreters, such as Wasm3 [18], follow a fetch-execute
loop, reading the bytecode and then executing native code
specific to the fetched instruction. Various implementation
techniques have emerged for interpreters, and currently, the
most prevalent one for fast execution is threaded interpre-
tation [1]. Such interpreters dispatch the next instruction
using a jump table with a separate indirect branch in each
instruction implementation, allowing independent branch
prediction of those targets for each instruction type.

Just-in-Time compilers generate native machine code
during program execution, often inserting instrumentation
and using the collected data to choose functions to recom-
pile for better performance. The V8 [8] runtime evaluated
in this paper is one of the classic examples of a JIT runtime
for JavaScript and WebAssembly.

Ahead-of-Time compilers, often just called compilers,
convert bytecode into machine code all at once before the
program starts executing. Despite using JIT frameworks to
load the compiled code at runtime into the host, WAVM [27]
and Wasmtime [3] are in fact AOT compilers, since they
never adjust the generated code after it has been compiled
and loaded into the host process.

2.3. Bounds Checking Techniques

WebAssembly requires checking that each memory load
and store instruction points to an address within the bounds
of the active linear memory. This is similar to inserting
checks that indices lie inside the bounds of an array for
each array indexing operation, but here, it happens for
every memory access. The naïve approach to ensuring
instructions do not access addresses outside the confines of
the virtual memory region is to simply perform a conditional
branch on the address compared to the memory limit every
time a memory access occurs. However, this approach can

258



significantly affect performance. On average, load and store
instructions form 40% of x86-64 programs [10], and inserting
a branch instruction before every single one results in a
significant cost, even if some proportion of the branches
can be eliminated by an optimization pass.

Therefore, high-performance runtimes instead use oper-
ating system mechanisms to manage virtual memory them-
selves and catch out-of-bounds accesses more efficiently.
This is done by over-allocating a large virtual memory
region and only populating the valid memory range with
read-write-allowed pages. The rest of the region generates
a CPU exception if illegally accessed, which the runtime
can subsequently catch and handle. Because the current
WebAssembly standard limits the memory access instruction
operands to a 32-bit integer address base and a 32-bit
integer offset, the total addressable space is 8 GiB, which
can be reserved in a single allocation on 64-bit machines
with virtual memory. The two 32-bit integers mean that
mathematically, the generated machine code cannot access
the area outside of this allocation. The downside of this
approach is that managing such large allocations in the
operating system can be costly, especially on less powerful
hardware. In Linux, changing the size of such an allocation
requires adjusting shared process VMAs, which requires
taking an exclusive modification lock [14]. If modification
happens frequently, this locking can have a negative scaling
impact for multithreaded applications.

An alternative mechanism for managing virtual memory
is Userfaultfd [15], which lets applications reserve a region
of virtual memory and handle page faults on that region in
userspace, with no kernel-side locking and VMAs remaining
untouched. The page fault handler can choose to populate
the faulted page (or a larger range of pages) with zero-filled
pages or with content copied from another range of pages.
It can also choose not to populate the pages at all and
instead raise an exception, if it determines that the access
is illegal. The handler can operate either as a thread polling
the userfault file descriptor and being notified of events,
or as a signal handler for SIGBUS signals that the kernel
sends to the page faulting thread. Because the SIGBUS
handler gets executed within the same thread that caused
the page fault, it avoids back-and-forth context switches
and can therefore achieve lower latency [37]. Thus, this is
the method we decided to use in our Userfaultfd-accelerated
bounds checking implementation.

Various hardware-accelerated bounds checking meth-
ods have also been proposed and implemented for array
accesses, some of which could be reused for WebAssembly
bounds checking. For example, some Intel processors had an
MPX extension providing bounds-checked pointer access in-
structions. However, such extensions have a high overhead
(50% on average [22]), leading Intel to discontinue the MPX
extension and remove it from the x86 processor manuals
in 2019. An upcoming, promising approach is CHERI [36],
which provides capability-checked memory accesses to mul-
tiple CPU architectures with a single mechanism. However,
CHERI is still in a relatively early phase of development

and hardware availability is very limited, so we did not
evaluate it in this work.

3. Benchmark Design

In this section, we present how we analyze and compare
the performance of different bounds checking techniques
in selected WebAssembly runtimes on multiple ISAs.

3.1. Bounds Checking Mechanisms

We consider the following bounds checking mecha-
nisms:

1) none: The entire possible memory space (8 GiB) is
read-write mapped. No bounds checks are performed
during execution.

2) clamp: All memory accesses pass through a condi-
tional selection operator. If the given pointer is out of
bounds, the memory end pointer is used instead.

3) trap: A conditional branch to error handling code.
If an access is out of bounds, a trap to the host is
generated by jumping to an invalid instruction, which
generates a SIGILL to be caught by the runtime.

4) mprotect: The entire memory space is preallocated
with no permissions. Illegal accesses during runtime
generate a SIGSEGV caught by the runtime. The
runtime invokes mprotect() to modify the process’
virtual memory area (VMA) to grant the necessary
permissions when memory is resized. As mentioned
previously, this requires acquiring a lock on the VMA
of the process, since all threads within a process share
one VMA protecting the entire virtual address space.

5) uffd: Similar to mprotect, but instead, the entire
memory space is lazily read-write mapped and regis-
tered with the userfaultfd feature, so that the bounds
checking can be handled in user space. Any attempt
to write a missing page generates a SIGBUS, which
prompts either an ioctl call to copy or zero the page,
or a new signal to be sent to the runtime. A lock is
only acquired for the page in question rather than the
entire VMA, so requests from multiple threads can
be handled simultaneously (as long as they reference
distinct pages).

3.2. Runtimes

We consider a total of six execution environments. Two
are native environments, where the benchmarks are com-
piled to machine code using either GCC 11 or Clang 13 and
then executed with no WebAssembly-style bounds checking
to give baseline metrics. The other four are WebAssembly
runtimes, where the benchmarks are first compiled to
WebAssembly using Clang 13 from the WASI SDK (target
wasm32-wasi) before being translated to native code and
executed by the runtime. The WebAssembly runtimes are
able to provide isolation, so for each benchmark instance,
the WebAssembly benchmark runner spawns one instance
of the runtime in an isolated thread, with all threads
contained within the same process. On the other hand,

259



the native benchmark runner spawns one process for each
benchmark instance. The four WebAssembly runtimes are:

1) WAVM [27]: A standalone virtual machine that uses
the LLVM [16] compiler infrastructure (specifically the
MCJIT framework [17]) to AOT compile WebAssembly
to machine code. We modified 140 lines of code to add
alternative bounds checking methods.

2) Wasmtime [3]: A standalone runtime that uses the
Cranelift [2] code generator to compile WebAssembly
to machine code. We modified 500 lines of code to add
alternative bounds checking methods.

3) Wasm3 [18]: A standalone threaded interpreter for
WebAssembly bytecode. We modified 80 lines of code
to integrate it with our harness.

4) V8 TurboFan [8] with the Node.js WASI implementa-
tion [23]: A standalone JavaScript and WebAssembly
runtime, used as a part of the Chromium [7] web
browser and focused on striking a balance between
speed of compilation and speed of the executed code
for Web applications. We modified 400 lines of code
to add alternative bounds checking methods.

The WAVM, Wasmtime, and V8 runtimes all use mpro-
tect to implement bounds checking by default. We aug-
mented those three runtimes with implementations for none,
clamp, trap, and uffd strategies. Since Wasm3 does not gen-
erate compiled code, the way that the memory instruction
interpreter code is written means that it effectively uses an
equivalent of the trap mechanism. Since the Wasm3 runtime
is already significantly slower at executing WebAssembly,
we did not modify this mechanism. All runtimes are also
designed to be standalone; that is, able to run outside of a
web browser environment. They do this by targeting the
WebAssembly System Interface (WASI) [34], rather than
any specific browser API. This removes the dependency on
JavaScript and increases portability.

3.3. Benchmarks

We chose to use the PolyBench/C benchmarks [25]
in the MEDIUM configuration for evaluation, in order to
allow us to compare with earlier results [13] [26]. We also
decided to use the SPEC CPU 2017 Rate benchmark suite
[28] in order to provide a more comprehensive evaluation.
PolyBench/C consists mostly of simple numerical kernels,
while SPEC CPU is made up of more complex, real-world
applications such as deepsjeng (chess engine), xz (compres-
sor), and x264 (video codec). Together, the two suites cover
a wide range of applications, providing a comprehensive
evaluation of WebAssembly overheads in different scenarios.

Since some of the SPEC benchmarks rely on libc and C++
functionality (e.g., signal handling, non-local exits, excep-
tions) and the WASI libc [35] implementation is still under
development, we were only able to compile a subset1 of the
SPEC benchmarks to WebAssembly for evaluation. However,
we were able to use all of the PolyBench/C benchmarks. We
are optimistic that as the WASI and WebAssembly standards

1. Subset of SPEC CPU 2017 Rate suite used: 505.mcf_r, 508.namd_r,
519.lbm_r, 525.x264_r, 531.deepsjeng_r, 544.nab_r, and 557.xz_r

evolve and a Fortran to WebAssembly compiler is developed,
the rest of the SPEC CPU suite will run under WASI.

Due to the very long execution times of the SPEC bench-
marks and the very high number of tested configurations,
we chose to use the Train configuration rather than the
Refrate configuration. Based on trial runs, we estimate that
running all of the benchmark configurations in the Refrate
mode would take about a month of CPU time on each
machine, and possibly more on RISC-V, if our platform had
enough memory available to run SPEC there.

3.4. Hardware

The runtimes (subsection 3.2) were evaluated on the
benchmarks (subsection 3.3) on three hardware configura-
tions with different architectures:

1) x86-64: Intel Xeon Gold 6230R, with 16 hardware
threads enabled, no simultaneous multithreading, 768
GiB of system memory.

2) AArch64: Cavium ThunderX2 CN9980 v2.2, config-
ured to have 16 hardware threads, no simultaneous
multithreading, 256 GiB of system memory.

3) RISC-V: Nezha D1 1GB development board, with the
XuanTie C906 CPU, single core and hardware thread.

Each system was running the Ubuntu 22.04 LTS operat-
ing system, with recent kernel versions (5.16, 5.13 and 5.16
respectively). We disabled CPU vulnerability mitigations
with the mitigations=off kernel command-line argument
to better represent the architectural differences between
CPUs, excluding the impact of OS-based mitigations of prob-
lems that have been and will be addressed in newer CPU
models [30]. The CPU governors were set to performance
mode where possible, to prefer higher operating frequency
over power saving.

On each system, we ran 1, 4 and 16 copies of the
benchmarks pinned on separate logical cores, following
how the official SPEC CPU Rate suite runner works in
multithreaded configurations. The RISC-V system was
only tested with the PolyBench/C suite, and only in a
single-threaded mode. This is because the 1 GiB physical
memory available made it impossible to run the SPEC suite,
and because the CPU only has one physical core with
no simultaneous multi-threading capabilities. Additionally,
the WAVM and Wasmtime runtimes do not have RISC-V
backends to test – when WAVM was forced to generate
RISC-V code via LLVM, this led to crashes in the MCJIT
framework, and Wasmtime’s Cranelift backend does not
have a RISC-V target implemented – leaving the RISC-V
platform with the native, Wasm3 and V8 runtimes only.

3.5. Benchmarking Harness

In order to make consistent measurements between all
of the execution environments, we implemented a custom
benchmarking harness in about 2000 lines of C++ code. The
harness interacts directly with the WebAssembly runtimes
via their C and C++ APIs.

The harness first ensures that the Wasm code is fully
loaded into the runtime and compiled where appropriate,

260



before executing a clone of the benchmark module in a
timed loop in each worker thread that is pinned to a CPU
core. Only the module execution is timed; the setup and
teardown between loop iterations is not included in the
reported time.

To ensure that all physical CPU threads are equally busy
before the timed execution runs begin, there is a warm-up
phase. Once each thread finishes its timed workload, it
continues to run the WebAssembly code for a few more
iterations, until all of the threads finish their measured runs.
This ensures that the final measurements are not affected
by other CPU cores becoming less busy.

For native code, the same overall procedure is followed,
except rather than simply calling the JITted code, a new
process is spawned with a vfork() and fexecve() syscall
combination (on a pre-opened executable file descriptor to
reduce process creation overhead). This is done because
loading multiple copies of native Linux executables into
the same process is not achievable via any standard system
interfaces. The downside of this is that it includes the
process spawning and teardown overhead in the native
code measurements. However, we measured this overhead
to be in the order of a hundred microseconds once the
benchmarks warm up, so it does not affect the results
significantly.

Our benchmarking harness, patches to the WebAssembly
runtimes, and automation scripts are all available under
an open-source license, excluding the SPEC benchmarks,
which are protected by copyright. See the Appendix for
instructions on how to obtain and execute our code [29].

4. Evaluation

In the following section, we discuss the performance
of each bounds checking mechanism and runtime config-
uration introduced in subsection 3.1 and subsection 3.2
when executing the benchmarks listed in subsection 3.3.
We collect a variety of execution statistics, using the native
Clang and GCC benchmark runs as baselines.

4.1. Execution Time Statistics

We collected detailed execution time statistics for each
benchmark in each configuration, with a minimum of ten
SPEC benchmark runs and a minimum of hundreds of
PolyBench/C runs on each CPU thread, excluding the warm-
up and cool-down runs.

A comparison of the results for each single-threaded
configuration, obtained by taking the geometric mean of the
ratios [4] of execution times to the Native Clang execution
time for each benchmark, is shown in figures 2a, 2b, and
2c. SPEC and PolyBench/C (PBC) results are separated.

From these results, we can see that the fastest Web-
Assembly runtime among those evaluated is WAVM, fol-
lowed by Wasmtime and then very closely by V8. As we
would expect, no bounds checking is the fastest. However,
the mprotect() and UFFD strategies also have very little
overhead, in the order of 1-2 percentage points, except in
the case of the V8 runtime, which has a 10 point difference.

The conditional checks are significantly slower in a
number of configurations, most notably in WAVM, with
clamping addresses unconditionally behaving worse than
generating conditional traps.

Based on these results, we can say that WebAssembly
runtimes with an advanced backend focusing on perfor-
mance (such as WAVM backed by LLVM) can be used to
sandbox code running in server environments with only a
minor overhead. WAVM was able to generate better code
with its LLVM frontend for some PolyBench/C benchmarks
than native LLVM, performing closer to a native GCC
compiler, which happens to generate faster code for this
particular suite.

We investigate the causes of these differences in the
following sections by looking at various system and CPU
performance counters. This data is presented for the x86-64
and Armv8 architectures, because running the monitoring
tools on the RISC-V board was causing significant changes
to the results due to the slow, single-threaded CPU perfor-
mance.

4.1.1. Scaling With Thread Counts. One interesting
characteristic of the various runtimes and bounds checking
methods is how their overall performance is affected by
running multiple isolates in parallel on separate threads.
We investigated this by running multiple instances of each
benchmark on worker threads, pinned to chosen CPU cores
to reduce the impact of scheduling decisions about CPU
migrations. The performance scaling at 1, 4 and 16 threads
(all active CPU cores) is shown in figures 3a and 3b.

In most cases, we can see that running multiple parallel
benchmark instances in separate threads does not affect
the performance in a major way. The small slowdowns
are easily explained by the usual causes, confirmed by
monitoring the systems during benchmarking: different
frequency scaling characteristics when more CPU cores are
busy in modern CPUs, increased memory bus contention,
and mutual exclusion when executing certain syscalls such
as write operations.

One major visible result is that V8 struggles when
16 worker threads are created. This is because V8 uses
worker threads for some of its internal operations, such
as JIT compilation. Internal worker threads are also used
for periodic garbage collection, which locks other worker
threads from performing work. When all of the physical
cores are already occupied by the benchmarks, this internal
work requires context switches, which are visible in figure
5b – scaling the number of threads for V8 increases the
measured switches by an order of magnitude.

Another major difference, also visible in the context
switch graphs, is the poor scaling of mprotect()-based
memory protection to multiple threads. This is especially
visible in the PolyBench/C benchmarks, which execute
in a short span of time, causing frequent allocation and
deallocation of memory. This stresses the virtual memory
management subsystem in the Linux kernel for the host
process, causing excessive locking and pausing of thread
execution.

261



87
7%

Native
GCC

Native
Clang WAVM Wasmtime W3 V8

8.8 8.8

95
%

10
7%

10
0%

10
0%

10
8% 11

9%
10

8% 12
0%

11
1%

11
1%

21
7%

20
4%

19
9%

18
6%

13
7% 15

6%
13

7% 15
6%

14
0%

14
4%

13
7% 15

6%
13

7% 15
7%

12
1% 14

3%
14

2% 16
9%

15
1%

15
5%

15
0% 17

8%
14

1% 16
9%

PB
C

.N
o 

ch
ec

ks
SP

E
C

.N
o 

ch
ec

ks

PB
C

.N
o 

ch
ec

ks
SP

E
C

.N
o 

ch
ec

ks

PB
C

.N
o 

ch
ec

ks
SP

E
C

.N
o 

ch
ec

ks
PB

C
.M

pr
ot

ec
t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D
SP

E
C

.U
FF

D
PB

C
.C

la
m

p
SP

E
C

.C
la

m
p

PB
C

.T
ra

p
SP

E
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks
SP

E
C

.N
o 

ch
ec

ks
PB

C
.M

pr
ot

ec
t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D
SP

E
C

.U
FF

D
PB

C
.C

la
m

p
SP

E
C

.C
la

m
p

PB
C

.T
ra

p
SP

E
C

.T
ra

p

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks
SP

E
C

.N
o 

ch
ec

ks
PB

C
.M

pr
ot

ec
t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D
SP

E
C

.U
FF

D
PB

C
.C

la
m

p
SP

E
C

.C
la

m
p

PB
C

.T
ra

p
SP

E
C

.T
ra

p0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

Benchmark

R
el

at
iv

e 
tim

e 
(L

ow
er

=
B

et
te

r)

(a) x86-64

12
62

%

Native
GCC

Native
Clang WAVM Wasmtime W3 V8

13 13

88
%

10
5%

10
0%

10
0%

96
% 13

5%
96

% 13
5%

10
3% 12

8%
22

1%
27

8%
17

3%
22

9%

10
7%

16
6%

10
7%

16
7%

11
4%

15
6%

10
7%

16
6%

10
7%

16
7%

10
4%

15
6%

11
4%

17
6%

12
2%

16
5%

12
3%

20
5%

11
4%

17
6%

PB
C

.N
o 

ch
ec

ks
SP

E
C

.N
o 

ch
ec

ks

PB
C

.N
o 

ch
ec

ks
SP

E
C

.N
o 

ch
ec

ks

PB
C

.N
o 

ch
ec

ks
SP

E
C

.N
o 

ch
ec

ks
PB

C
.M

pr
ot

ec
t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D
SP

E
C

.U
FF

D
PB

C
.C

la
m

p
SP

E
C

.C
la

m
p

PB
C

.T
ra

p
SP

E
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks
SP

E
C

.N
o 

ch
ec

ks
PB

C
.M

pr
ot

ec
t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D
SP

E
C

.U
FF

D
PB

C
.C

la
m

p
SP

E
C

.C
la

m
p

PB
C

.T
ra

p
SP

E
C

.T
ra

p

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks
SP

E
C

.N
o 

ch
ec

ks
PB

C
.M

pr
ot

ec
t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D
SP

E
C

.U
FF

D
PB

C
.C

la
m

p
SP

E
C

.C
la

m
p

PB
C

.T
ra

p
SP

E
C

.T
ra

p0

1

2

3

0

1

2

3

Benchmark

R
el

at
iv

e 
tim

e 
(L

ow
er

=
B

et
te

r)

(b) Armv8

68
8%

Native
GCC

Native
Clang W3 V8

6.9 6.9

96
%

10
0% 10

7% 11
7%

12
1%

12
6%

11
7%

PB
C

.N
o 

ch
ec

ks

PB
C

.N
o 

ch
ec

ks

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks

PB
C

.M
pr

ot
ec

t

PB
C

.U
FF

D

PB
C

.C
la

m
p

PB
C

.T
ra

p0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Benchmark

R
el

at
iv

e 
tim

e 
(L

ow
er

=
B

et
te

r)

(c) RISC-V

Figure 2: Geometric mean of per-benchmark execution time medians divided by the native Clang time medians

Native
GCC

Native
Clang WAVM Wasmtime W3 V8

9.9

8.8

9.9

8.8

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Threads 1 4 16

Benchmark

R
el

at
iv

e 
tim

e 
vs

 n
at

iv
e 

cl
an

g 
(L

ow
er

=
B

et
te

r)

(a) x86-64

Native
GCC

Native
Clang WAVM Wasmtime W3 V8

1313 1313

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p0.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

Threads 1 4 16

Benchmark

R
el

at
iv

e 
tim

e 
vs

 n
at

iv
e 

cl
an

g 
(L

ow
er

=
B

et
te

r)

(b) Armv8

Figure 3: Performance scaling with increased number of threads

4.2. System Performance Statistics

4.2.1. CPU Utilisation. We define CPU utilisation as the
total number of milliseconds, averaged across all CPU(s),
that the Linux kernel reports in /proc/stat spending in
either user or kernel mode2, offset by the total number of
milliseconds spent idle, i.e.

user + sys + hi + si

user + sys + hi + si + id
(1)

We rescale this quantity so that 100% utilization is a full
utilization of one CPU core, meaning that 1600% utilization
represents all 16 cores occupied.

In figures 4a and 4b, we can see that in the single-
threaded configuration, all of the runtimes are able to
saturate a full CPU core, with the Arm machine having
larger off-main-thread activity than x86. As mentioned in
subsubsection 4.1.1, the V8 runtime implementation uses
extra worker threads for internal operations, therefore the
utilization for V8 is larger than for the other runtimes. In
the case of the 16-threaded workload, presented in figures
4c and 4d, we can see that all runtimes except V8 are able
to achieve full CPU saturation. Again, the lower saturation

2. user represents user mode time including “nice” time, sys represents
kernel mode time, hi represents time servicing interrupts, si represents
time servicing softirqs, and id represents idle time

in V8 is due to the periodically running JavaScript garbage
collector, which pauses the execution of other threads.

Similar to the results in subsection 4.1.1, one big, visible
difference here between the bounds checking strategies is
that mprotect()-based protection does not saturate the
CPU like other mechanisms. As discussed in subsection 3.1,
this is due to a mutex in the Linux kernel protecting the
process VMA. When WebAssembly resizes its memory to
allocate or run the next iteration, that mutex is acquired for
significant periods of time, which we were able to confirm
by capturing stack traces of threads in a waiting state via
bpftools.

The effect is not visible with the conditional clamp and
trap bounds checking methods because they require less
virtual memory manipulation. The UFFD mechanism in the
kernel does not acquire an exclusive lock over that structure,
so the userspace code is able to use lockfree structures to
manage its memory. In our implementation, we use an
atomic integer variable controlling the size of each memory
arena, and a hazard pointer [19]-style implementation for
adding and removing memory arenas, avoiding the need
for locks most of the time.

The locking effect was significantly more visible in
shorter-running benchmarks. Therefore, we make a recom-
mendation that for short-lived WebAssembly tasks, such
as for certain classes of serverless applications, using

262



Native
GCC

Native
Clang WAVM Wasmtime W3 V8

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

0

20

40

60

80

100

120

VM Configuration

C
PU

 u
til

iz
at

io
n 

(1
00

%
=

1 
co

re
)

(a) x86-64 single thread

Native
GCC

Native
Clang WAVM Wasmtime W3 V8

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

0

20

40

60

80

100

120

140

160

VM Configuration

C
PU

 u
til

iz
at

io
n 

(1
00

%
=

1 
co

re
)

(b) Armv8 single thread
Native
GCC

Native
Clang WAVM Wasmtime W3 V8

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

0

200

400

600

800

1,000

1,200

1,400

1,600

C
PU

 u
til

is
at

io
n 

(%
)

(c) x86-64 16 thread

Native
GCC

Native
Clang WAVM Wasmtime W3 V8

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

0

200

400

600

800

1,000

1,200

1,400

1,600

C
PU

 u
til

is
at

io
n 

(%
)

(d) Armv8 16 thread

Figure 4: Average CPU load during benchmark execution

userspace-managed pagefault handlers can be preferential
to mprotect()-based handlers, unless the Linux kernel
memory management switches to finer-grained locking or
lockfree data structures.

4.2.2. Context Switches. We also measure the total num-
ber of context switches per second, averaged across all
CPU(s), for each configuration. The data can be seen in
figures 5a and 5b. The bounds checking mechanism has no
significant impact on the context switch rate, except for
the previously discussed mprotect() scaling issue. When
scaling V8 to multiple threads, care has to be taken to not
saturate the CPU, as spawning 16 worker threads on a
16-core CPU negatively impacts performance due to the
internal worker threads.

4.3. Memory Usage

We present the memory usage, as measured by
the difference between total and “available” memory in
/proc/meminfo, of the different runtimes in all of the
bounds checking configurations in figures 6a and 6b.

There is no visibly significant variance in memory usage
between the different runtimes or bounds checking methods.
When considering architectures, one observable difference is
the increased memory usage of the PolyBench/C benchmark
suite on the x86-64 architecture when compared with
the Armv8 architecture. This is due to the Linux kernel
using huge pages to serve the WebAsssembly reservations,
removing them from the pool of readily available memory.
Reclaiming that memory then requires splitting the pages

into smaller ones. The transparent huge pages mechanism
on the x86-64 ISA uses pages of up to 1 GiB in size, whilst
on Armv8, the limit is 2 MiB, leading to more fine-grained
memory usage reporting.

4.4. Replicating Previous Results

In 2022, Titzer [31] measured Wasm3 to be roughly 10×

slower than V8-TurboFan on the PolyBench/C benchmarks,
which agrees with our results of between 6 and 11× slower
on the same suite, depending on the CPU architecture.

In 2017, Rossberg et al. [26] measured PolyBench/C
execution time on V8, showing that “WebAssembly is
competitive with native code, with seven benchmarks within
10% of native and nearly all of them within 2× of native”.
The measured performance for each benchmark closely
matches our measurement in figure 1.

In 2019, Jangda et al. [13] reported a 1.55× geomean
slowdown of SPEC on V8 compared to native. We measured
a 1.69× slowdown on x86-64 and a 1.76× slowdown on
Armv8. Jangda et al. were able to run a bigger subset of
SPEC, thanks to developing a custom POSIX layer that
WebAssembly interacted with via JavaScript. Most of the
runtimes evaluated in this paper do not support JavaScript,
therefore we could not use Browsix to run the same subset
of benchmarks.

Using these previous works as a reference point, we
can see that whilst Web-focused WebAssembly runtimes
and interpreters have made very slow progress on the
performance front since 2017, more performance-oriented

263



Native
GCC

Native
Clang WAVM Wasmtime W3 V8

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

1

10

100

1,000

VM Configuration

C
on

te
xt

 s
w

itc
he

s 
pe

r 
C

PU
 s

ec
on

d
Threads 1 4 16

(a) x86_64

Native
GCC

Native
Clang WAVM Wasmtime W3 V8

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

1

10

100

1,000

10,000

VM Configuration

C
on

te
xt

 s
w

itc
he

s 
pe

r 
C

PU
 s

ec
on

d

Threads 1 4 16

(b) ARMv8

Figure 5: Total number of context switches per CPU second induced by the tested runtimes

Native
GCC

Native
Clang WAVM Wasmtime W3 V8

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

1

2

3

4
5
6
7

10

A
ve

ra
ge

 m
em

or
y 

us
ag

e 
[G

B
]

Bounds No checks Mprotect UFFD Clamp Trap

(a) x86_64

Native
GCC

Native
Clang WAVM Wasmtime W3 V8

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

PB
C

.T
ra

p

PB
C

.N
o 

ch
ec

ks

SP
E

C
.N

o 
ch

ec
ks

PB
C

.M
pr

ot
ec

t

SP
E

C
.M

pr
ot

ec
t

PB
C

.U
FF

D

SP
E

C
.U

FF
D

PB
C

.C
la

m
p

SP
E

C
.C

la
m

p

PB
C

.T
ra

p

SP
E

C
.T

ra
p

1.0

1.5

2.0

2.5

3.0

3.5

4.0
4.5
5.0

A
ve

ra
ge

 m
em

or
y 

us
ag

e 
[G

B
]

Bounds No checks Mprotect UFFD Clamp Trap

(b) ARMv8

Figure 6: Average memory usage by the tested runtimes

runtimes have emerged recently and are approaching near-
native performance levels for a wider set of programs.

5. Related Work

Whilst previous work already compared different WASM
runtimes already, none focused on the overhead added by
bounds checking. Additionally, previous work does not show
how the cost of bounds checking varies across different
CPU ISAs. We briefly summarize this previous work here.

With the introduction of Wasm in their 2017 paper,
Rossberg et al. [26] compared the Wasm implementation
in V8 and in SpiderMonkey on x86 only, without breaking
down the bounds checking overhead. Jangda et al. [13]
introduces additional benchmarks to Rossberg et al. [26]
using a JavaScript POSIX emulation shim, so that SPEC
can also be used to benchmark WebAssembly, in addition
to PolyBench/C. They are the first to highlight that Wasm
is slower than what has been reported before, and that
one of the issues is the safety checks. However, their work
does not explore why that is the case, is based on x86 only,
and does not introduce new bounds checking mechanisms
enabled by the latest OS advances – which is the core
contribution of this paper.

Yan et al. [38] presents a performance evaluation of
Wasm on a large collection of benchmarks, being the only
work considering Wasm execution on x86 (desktop) and
Arm (mobile). At the same time, their work does not explain

the cost of bounds checking, nor does it introduce anything
new in Wasm runtimes.

Hilbig et al. [12] also introduces a large collection
of Wasm benchmarks, WasmBench – which focuses on
x86 only, and does not include considerations on bounds
checking – highlighting that memory errors can be propa-
gated into Wasm and further justifying our work. Finally,
Titzer [31] compares several engine runtimes (WAMR,
Wasm3, V8-Liftoff and V8-TurboFan, SpiderMonkey, and
JSC) on an Intel Core-i7, using PolyBench/C-4.2.1, showing
execution time, translation time and space statistics. Whilst
we reported similar metrics, Titzer did not breakdown the
cost of bounds checking, nor did they introduce any new
bounds checking methods on any engine runtime, nor did
they compare different ISAs.

6. Discussion

Our evaluation of four different WebAssembly runtimes
against native GCC and Clang-compiled code on two
benchmark suites shows that there exists a variety of
available runtimes, each striking a different balance between
complexity, size, and runtime performance. WebAssembly
has grown from initially having Web-focused applications
into being a generic sandbox platform for server [32] and
client [5] applications.

WebAssembly brings unique security mechanisms to
the table, with one of the major ones being bounds-checked

264



memory accesses. Whilst other languages often check array
index bounds, WebAssembly limits all memory instructions
to accessing a single, resizable block of memory, checking
whether those accesses are within the current bounds on
every load and store. We augmented the WebAssembly run-
times that use a compiler with alternative bounds checking
approaches, and based on this, we quantified the exact
impacts of pure software and virtual memory-accelerated
bounds checking against disabled bounds checks. The exact
overheads vary across architectures and benchmarks, but
overall, pure software checks cause a significantly higher
overhead when compared to allocating large regions of
virtual memory and using page fault handlers to catch
illegal accesses.

7. Conclusion

We show that, on average, runtimes such as WAVM
and Wasmtime are able to achieve performance within
20% of the native performance on x86-64 platforms, and
within 35% on Armv8. On RISC-V, V8 can achieve a 17%
overhead over native code for simple numeric kernels from
the PolyBench/C benchmark suite. For such kernels, we
have shown that there is no significant difference in the
WebAssembly execution time overheads across the three
tested architectures: x86-64, Armv8, and RISC-V RV64GC.

When considering multithreaded scaling of the tested
runtimes – which might, for example, be used to quickly
scale up serverless instances for a single function without
the overhead of spawning new processes – the default
approach taken by WAVM, Wasmtime, and V8 of using the
mprotect() syscall to resize memory can cause excessive
locking in the Linux kernel. This can be mitigated by
using simpler, lockfree data structures for managing page
permissions, which we were able to achieve using Linux’s
recent userfaultfd mechanism for handling page faults in
userspace.

We share our results and the entire set of tools and
scripts under an open source license, with the exception of
the SPEC CPU benchmarks, for which we only distribute the
small patches required to compile them for WebAssembly
due to the SPEC licensing terms. We hope that other
researchers can use these tools in the future to replicate
our results and monitor the progress that WebAssembly
runtimes make as this technology evolves.

Acknowledgment

This work was partially funded by the Edinburgh
Huawei Research Lab.

Appendix

1. Abstract

The artifact contains the source code of the benchmarks
and WebAssembly runtimes evaluated in the paper, Docker
containers used for building and executing them, the
original experimental data as shown in the plots in the

paper, and R code to generate the plots used in the paper –
either from the original data, or a new benchmark run by
the artifact user.

Users can reproduce all the presented results (all figures)
in the paper, provided they can supply a copy of the
SPECcpu2017 benchmark suite and own three platforms
compatible with the systems used in the paper (x86_64,
Armv8 and RISC-V RV64GC). Any subset of the benchmarks
can be run on any subset of the machines to reproduce the
results for those specific suites and architectures.

2. Artifact check-list (meta-information)

• Program: PolybenchC 4.2 (included, public), SPECcpu2017
(not provided, optional, proprietary, patches provided)

• Compilation: Standard GCC 11, Clang 11, Clang 13, Rust
1.62 – all provided in the toolchain Docker images

• Binary: Benchmark binaries compiled for the x86_64
architecture provided, scripts to build for other architectures
provided, harness binaries provided for all architectures in
the form of Docker images

• Data set: Included in the source code of the benchmark
suites

• Run-time environment: Linux 5.7, R 4.2.1 and Rust 1.62
compiler required, Ubuntu 22.04 installation recommended.
Dependencies provided

• Hardware: x86_64, 64-bit Armv8 or RISC-V RV64GC CPU
required

• Run-time state: Sensitive to background applications, run
isolated

• Execution: Sole user of the machine, can take up to 3 days
to run depending on SPECcpu2017 presence

• Metrics: Reports execution time (each sample stored
individually for later aggregation), system performance coun-
ters (load, process counts, etc.), CPU performance counters
(branches predicted, cache misses, etc. where available)

• Output: Benchmarks produce a logfile, which can be
converted to CSV via the included script and plotted to
PDF graphs via the provided R script

• Experiments: Automation shell scripts are provided, man-
ual actions needed for the initial setup.

• How much disk space required (approximately)?: 25
GiB

• How much time is needed to prepare workflow (ap-
proximately)?: 15 minutes, 1 hour if also providing a copy
of SPECcpu2017

• How much time is needed to complete experiments
(approximately)?: 1 day, 3 days if also providing a copy
of SPECcpu2017

• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT, Full source

code provided except for SPECcpu2017
• Data licenses (if publicly available)?: MIT
• Workflow framework used?: Custom C++ code with

Docker containers and scripts for reproducibility and ease-
of-use

• Archived (provide DOI)?: Yes, on Zenodo: https://doi.org/
10.5281/zenodo.7068161 [29], also available on GitHub: https:
//github.com/wasmbounds/wasmbounds and https://github.
com/wasmbounds/wasmbounds/releases/tag/v1.0.0

3. Description

3.1. How to access.

265



1) Download all the archives from Zenodo https://doi.
org/10.5281/zenodo.7068161 [29] (or GitHub if that is
more convenient, the files are identical: https://github.
com/wasmbounds/wasmbounds/releases/tag/v1.0.0).

2) Extract wasmbounds-oss-v1.0.0.tar.gz to a folder named
wasmbounds

3) Follow the instructions in the README.MD plain text
file in the extracted folder.

3.2. Hardware dependencies.

• Generating plots with R requires about 10 GiB free
system memory while parsing the input CSV files

• The Polybench/C benchmarks have been successfuly
run on the RISC-V system with 1GiB of memory
(singlethreaded), while SPECcpu2017 requires up to
2GiB per thread run

• Plotting software and the WASM compiler run on the
x86_64 architecture

• The benchmarks and WebAssembly runtimes run on
x86_64, Armv8 (AArch64) and RISC-V 64GC architec-
tures (some WebAssembly runtimes don’t successfully
run on RISC-V)

3.3. Software dependencies. The required software for
reproducing the results is as follows:

• A recent Linux distribution is assumed as the operating
system, e.g. Ubuntu 22.04 LTS. Use mitigations=off

nr_cpus=16 to turn off Spectre mitigations and limit
CPU core count to 16 to match the configuration used
in the paper.

• For the plotting: R 4.2.1, with the tidyverse and
other libraries, specifically: tidyverse, rio, scales, xtable,
ggbreak, patchwork, rmarkdown, xfun.

• For system monitoring (optional, recommended for full
results): Rust compiler v1.62.0

• For compiling and running benchmarks via containers:
Docker - Dockerfiles are provided which will fetch,
compile and run all necessary dependencies

• For running benchmarks on bare metal:

– For Ubuntu 22.04-specific installation instructions
see the commands in the Dockerfiles included in
the repository

– Python 3.10
– Docker 20.10
– Linux kernel, version at least 5.7
– GCC 11.2 for native benchmark compilation
– LLVM 11 + Clang SDK for the WAVM runtime
– Clang 13 for native benchmark compilation
– WASI SDK 15
– CMake 3.22
– Boost 1.79.0, Abseil C++ 20220623.1

4. Installation

Full step-by-step instructions are provided in the
README.MD file.

A summarized version of commands to run in the system
shell is:

1 # In first shell run the performance monitoring

tool

2 cd statmon

3 cargo build --release

4 # Root permission might not be needed if

unprivileged access to performance counters

is enabled via the relevant sysctls in Linux

5 sudo ./ target/release/statmon --port 8125

--host -prefix local --netdev lo

6
7 # In second shell

8 # Load 's last line of output has the sha256 of

the imported image , tags have to be recreated

manually

9 docker load -i

wasmbounds -runtime -base.ARCHITECTURE.tar

10 docker tag sha256:xxxxxxx wasmbounds -runtime -base

11 docker load -i

wasmbounds -toolchain -base.ARCHITECTURE.tar

12 docker tag sha256:xxxxxxx

wasmbounds -toolchain -base

13 docker load -i wasmbounds -runners.ARCHITECTURE.tar

14 docker tag sha256:xxxxxxx wasmbounds -runners

5. Experiment workflow

Full step-by-step instructions are provided in the
README.MD file.

Summarized version of commands to run benchmarks:

1 # If not using the provided x86\_64 binaries:

2 ./ build_binaries.sh polybenchc

3 # Dry run (no benchmark execution)

4 ./ benchrunner.sh --monitor -host 127.0.0.1

--monitor -port 8125 --output -dir runs

--dry -run --suites polybenchc

5 # Test run (each benchmark ran once)

6 ./ benchrunner.sh --monitor -host 127.0.0.1

--monitor -port 8125 --output -dir runs

--one -run --min -seconds 0 --min -runs 1

--suites polybenchc

7 # Full run

8 ./ benchrunner.sh --monitor -host 127.0.0.1

--monitor -port 8125 --output -dir runs

--one -run --min -seconds 20 --min -runs 10

--suites polybenchc

9
10 # Convert the run logfile into a csv file for the

plotting script

11 ls runs # note the filename

12 ./ scripts/log2csv.py

./runs/benchrunner -HOST -regular -DATE -TIME.log

./runs/myrun.csv

6. Evaluation and expected results

Full step-by-step instructions for generating plots are
provided in the README.MD file. Minor variations in the specific
values as quoted in the paper are to be expected, but the
relative differences (larger vs. smaller) between bounds
checking methods should remain the same.

The short plots/knitall.R script contains an array of
machines plots are made for, add myrun to it to generate plots
from your experiment run(s). Run the following command
to regenerate plots from the data files in runs/:

1 cd graphs

2 Rscript ./ knitall.R

266



The plots will be generated as graphs/plots/*.pdf files,
the naming convention for them is wasmbounds_[MACHINE]_[

VARIABLE]_[CONFIGURATION].pdf. The knitall.R script "knits" the
wasmbounds.Rmd file in the same folder three times, switching
out the machine parameter

7. Experiment customization

Detailed description of the code structure, recompilation
and modification instructions are provided in the README.MD

file.
Each of the WebAssembly (Wasm) runtimes and bench-

mark suites lives in a separate folder named after the
upstream project. As much as it was possible, we made
minimum modifications to the runtimes and instead put
most of the shared code in the runner-src/ directory.

Each Wasm runtime has a corresponding benchmark
runner executable, built from the runner-src/impl_NAME.cpp

C++ source code, the build is defined in the CMakeLists.txt

file at the root of the bundle.
runner-src/runner.cpp has the main benchmarking loop,

which calls the setup and run functions for each runner. The
runner interface RunnerImpl is defined in runner-src/runner.h

file, it provides 3 main functions: the constructor RunnerImpl

(const RunnerOptions &opts) initializing the object, called
once per thread; void prepareRun (const RunnerOptions &opts)

which is executed before each execution step untimed; and
void runOnce (const RunnerOptions &opts) which is executed
at each step, timed by the runner loop.

To implement bounds checking methods like mprotect
and uffd control over the memory allocation is needed, so
we implemented a small library runner-src/vm-library which
provides header files for C and C++ at wasmbounds_rr.h[pp],
defining memory allocation, resizing and deallocation stubs
allowing to use the same implementation across all tested
WebAssembly runtimes. The runtimes were patched to call
into this library instead of their own platform abstraction
layer for managing WebAssembly memory objects for
the purpose of evaluating the impact of different bounds
checking methods in our paper.

The difference between upstream projects and our
patched versions can be seen either in the .patch files
in our bundle, or as the difference between commit 56643dd0
and the latest commit in the GitHub repository.

References

[1] J. R. Bell, “Threaded code,” Commun. ACM, vol. 16, no. 6, pp. 370–372,
1973. [Online]. Available: https://doi.org/10.1145/362248.362270

[2] Bytecode Alliance, “Cranelift,” https://github.com/bytecodealliance/
wasmtime/blob/main/cranelift/README.md, 2022, [Online; accessed
01-Mar-2022].

[3] ——, “Wasmtime,” https://github.com/bytecodealliance/wasmtime,
2022, [Online; accessed 01-Mar-2022].

[4] P. J. Fleming and J. J. Wallace, “How not to lie with statistics:
The correct way to summarize benchmark results,” Commun.
ACM, vol. 29, no. 3, pp. 218–221, 1986. [Online]. Available:
https://doi.org/10.1145/5666.5673

[5] N. Froyd, “Securing Firefox with WebAssembly,” https://hacks.mozilla.
org/2020/02/securing-firefox-with-webassembly/, 2020, [Online; ac-
cessed 01-Mar-2022].

[6] Google Corporation, “Native Client developer documentation,” https:
//developer.chrome.com/docs/native-client/, 2020.

[7] ——, “The Chromium project,” https://www.chromium.org/Home/,
2022, [Online; accessed 12-Jul-2022].

[8] ——, “TurboFan V8,” https://v8.dev/docs/turbofan, 2022, [Online;
accessed 12-Jul-2022].

[9] W. C. Group, “WebAssembly Core Specification,” https://webassembly.
github.io/spec/core/_download/WebAssembly.pdf.

[10] J. L. Hennessy and D. A. Patterson, Computer Architecture - A
Quantitative Approach, 5th Edition. -: Morgan Kaufmann, 2012.

[11] D. Herman, L. Wagner, and A. Zakai, “asm.js Specification,” http:
//asmjs.org/spec/latest/, 2014.

[12] A. Hilbig, D. Lehmann, and M. Pradel, “An empirical study of
real-world webassembly binaries: Security, languages, use cases,” in
Proceedings of the Web Conference 2021, ser. WWW ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 2696–2708.
[Online]. Available: https://doi.org/10.1145/3442381.3450138

[13] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not so fast:
Analyzing the performance of webassembly vs. native code,” login
Usenix Mag., vol. 44, no. 3, pp. 12–16, 2019. [Online]. Available:
https://www.usenix.org/publications/login/fall2019/jangda

[14] Linux Foundation, “Linux implementation of mprotect,” https://
github.com/torvalds/linux/blob/v5.19-rc4/mm/mprotect.c#L644, 2022,
[Online; accessed 28-Jun-2022].

[15] ——, “Linux Userfaultfd documentation,” https://www.kernel.org/doc/
html/latest/admin-guide/mm/userfaultfd.html, 2022, [Online; accessed
28-Jun-2022].

[16] LLVM Foundation, “LLVM,” https://llvm.org/, 2022, [Online; accessed
01-Mar-2022].

[17] ——, “LLVM MCJIT,” https://llvm.org/docs/
MCJITDesignAndImplementation.html, 2022, [Online; accessed
01-Mar-2022].

[18] S. Massey and V. Shymanskyy, “WASM3,” https://github.com/wasm3/
wasm3, 2022, [Online; accessed 12-Jul-2022].

[19] M. M. Michael, “Hazard pointers: Safe memory reclamation
for lock-free objects,” IEEE Trans. Parallel Distributed Syst.,
vol. 15, no. 6, pp. 491–504, 2004. [Online]. Available: https:
//doi.org/10.1109/TPDS.2004.8

[20] Microsoft Corporation, “Common Language Runtime (CLR) overview,”
https://docs.microsoft.com/en-us/dotnet/standard/clr, 2022, [Online;
accessed 12-Jul-2022].

[21] M. Musch, C. Wressnegger, M. Johns, and K. Rieck, “New kid on the
web: A study on the prevalence of webassembly in the wild,” in
Detection of Intrusions and Malware, and Vulnerability Assessment -
16th International Conference, DIMVA 2019, Gothenburg, Sweden, June
19-20, 2019, Proceedings, ser. Lecture Notes in Computer Science,
R. Perdisci, C. Maurice, G. Giacinto, and M. Almgren, Eds., vol.
11543. Gothenburg, Sweden: Springer, 2019, pp. 23–42. [Online].
Available: https://doi.org/10.1007/978-3-030-22038-9_2

[22] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel
mpx explained: A cross-layer analysis of the intel mpx system stack,”
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, vol. 2, no. 2, pp. 1–30, 2018.

[23] OpenJS Foundation, “Node.js WASI support,” https://nodejs.org/api/
wasi.html, 2022, [Online; accessed 12-Jul-2022].

[24] Oracle Corporation, “The Java® Virtual Machine Specification,”
https://docs.oracle.com/javase/specs/jvms/se18/html/index.html, 2022,
[Online; accessed 12-Jul-2022].

[25] L.-N. Pouchet and T. Yuki, “Polybench/C,” https://web.cse.ohio-state.
edu/~pouchet.2/software/polybench/, 2015, [Online; accessed 01-Mar-
2022].

267



[26] A. Rossberg, B. L. Titzer, A. Haas, D. L. Schuff, D. Gohman,
L. Wagner, A. Zakai, J. F. Bastien, and M. Holman, “Bringing the web
up to speed with webassembly,” Commun. ACM, vol. 61, no. 12, pp.
107–115, 2018. [Online]. Available: https://doi.org/10.1145/3282510

[27] A. Scheidecker, “WAVM,” https://github.com/WAVM/WAVM, 2022,
[Online; accessed 01-Mar-2022].

[28] Standard Performance Evaluation Corporation, “SPEC CPU 2017,”
https://www.spec.org/cpu2017/Docs/overview.html, 2017, [Online;
accessed 01-Mar-2022].

[29] R. Szewczyk, K. Stonehouse, A. Barbalace, and T. Spink, “Leaps
and bounds: Analysing WebAssembly’s performance with a
focus on bounds checking,” Nov. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.7068161

[30] M. Taram, A. Venkat, and D. M. Tullsen, “Mitigating speculative
execution attacks via context-sensitive fencing,” IEEE Des. Test,
vol. 39, no. 4, pp. 49–57, 2022. [Online]. Available: https:
//doi.org/10.1109/MDAT.2022.3152633

[31] B. L. Titzer, “A fast in-place interpreter for webassembly,” 2022.
[Online]. Available: https://arxiv.org/abs/2205.01183

[32] K. Varda, “WebAssembly on Cloudflare workers,” https://blog.
cloudflare.com/webassembly-on-cloudflare-workers/, Dec 2018.

[33] W3C, “Use Cases - WebAssembly,” https://webassembly.org/docs/
use-cases/, 2022, [Online; accessed 12-Jul-2022].

[34] ——, “WASI,” https://wasi.dev/, 2022, [Online; accessed 12-Jul-2022].

[35] ——, “WASI Libc,” https://github.com/WebAssembly/wasi-libc, 2022,
[Online; accessed 01-Mar-2022].

[36] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. M. Norton, and M. Roe,
“The CHERI capability model: Revisiting RISC in an age of
risk,” in ACM/IEEE 41st International Symposium on Computer
Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014.
IEEE Computer Society, 2014, pp. 457–468. [Online]. Available:
https://doi.org/10.1109/ISCA.2014.6853201

[37] P. Xu, “Userfaultfd-wp Latency Measurements,” https://xzpeter.org/
userfaultfd-wp-latency-measurements/, 2020.

[38] Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang, “Understanding the
performance of webassembly applications,” in Proceedings of the 21st
ACM Internet Measurement Conference, ser. IMC ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 533–549.
[Online]. Available: https://doi.org/10.1145/3487552.3487827

268


