The C++ programming language offers a strong exception mechanism for error handling at the language level, improving code readability, safety, and maintainability. However, current C++ implementations are targeted at general-purpose systems, often sacrificing code size, memory usage, and resource determinism for the sake of performance. This makes C++ exceptions a particularly undesirable choice for embedded applications where code size and resource determinism are often paramount. Consequently, embedded coding guidelines either forbid the use of C++ exceptions, or embedded C++ tool chains omit exception handling altogether. In this paper, we develop a novel implementation of C++ exceptions that eliminates these issues, and enables their use for embedded systems. We combine existing stack unwinding techniques with a new approach to memory management and run-time type information (RTTI). In doing so we create a compliant C++ exception handling implementation, providing bounded runtime and memory usage, while reducing code size requirements by up to 82%, and incurring only a minimal runtime overhead for the common case of no exceptions.